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Department of Mathematics and Informatics, University of Novi Sad,
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Abstract

The notion of absorption was developed a few years ago by Barto
and Kozik and immediately found many applications, particularly in
topics related to the constraint satisfaction problem. We investigate
the behavior of absorption in semigroups and n-ary semigroups (that
is, algebras with one n-ary associative operation). In the case of semi-
groups, we give a simple necessary and sufficient condition for a semi-
group to be absorbed by its subsemigroup. We then proceed to n-ary
semigroups, where we conjecture an analogue of this necessary and
sufficient condition, and prove that the conjectured condition is in-
deed necessary and sufficient for B to absorb A (where A is an n-ary
semigroup and B is its n-ary subsemigroup) in the following three
cases: when A is commutative, when |A \ B| = 1 and when A is an
idempotent ternary semigroup.
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68Q17
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1 Introduction

Let A be an algebra and B 6 A. We say that B absorbs A, denoted by
B E A, iff there exists an idempotent term t in A (that is, t(a, a, . . . , a) ≈ a
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for each a ∈ A) such that for each a ∈ A and b1, b2, . . . , bm ∈ B we have

t(a, b2, b3, . . . , bm) ∈ B;

t(b1, a, b3, . . . , bm) ∈ B;
...

t(b1, b2, b3, . . . , a) ∈ B.

The notion of absorption was developed a few years ago by Barto and
Kozik, and immediately found many applications [6, 7, 3, 4, 5]. We would
particularly like to mention that Bulatov’s dichotomy theorem for conserva-
tive CSPs [8], with a deep and complicated proof (nearly 70 pages long), was
reproved using these techniques on merely 10 pages [1]. Loosely speaking, the
main idea of absorption is that, when B E A where B is a proper subalgebra
of A, then some induction-like step can often be applied.

This naturally leads to the following question: given a finite algebra A
and its subalgebra B, is it decidable whether B E A? This question turns
out to be quite hard. Let us mention that the notion of absorption emerged
as a generalization of the notion of the so-called near-unanimity term (in
particular: an idempotent finite algebra A has a near-unanimity term iff
every singleton absorbs A). It was asked in 1995 whether the existence of
a near-unanimity term in a finite algebra A is decidable [11], and it took a
while to finally prove that it is [15] (another interesting point here is that,
before this proof appeared, there were some evidences suggesting that the
answer is actually negative). Some recent results on deciding absorption are
given in [10, 14, 2]; as expected, the proposed algorithms are quite complex.

In this paper we show that in semigroups the absorption is much easier
to grasp. Namely, for absorption in semigroups, in Theorem 1 we provide
a necessary and sufficient condition that is very easy to check. After that,
we turn to n-ary semigroups, that is, algebras A = (A, f) where f is an
n-ary associative operation. We conjecture an analogue of the necessary
and sufficient condition for B E A from Theorem 1, and we then prove the
conjecture in the following cases: when f is commutative, when |A \ B| = 1
and when A is an idempotent ternary semigroup.

Let us say a few words on a possible application of these results. Namely,
one of the most interesting algebraic results toward the CSP Dichotomy Con-
jecture of Feder and Vardi [12] is the proof that, if a finite relational structure
Γ does not admit any so-called weak near-unanimity (wnu) polymorphism,
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then CSP (Γ) is NP-complete (see [9], where Bulatov, Jeavons and Krokhin
gave a different algebraic sufficient condition for CSP (Γ) to be NP-complete,
and [16], where Maróti and McKenzie showed that this condition is equiv-
alent to the nonexistence of a wnu polymorphism). Bulatov, Jeavons and
Krokhin conjectured that the other direction also holds, that is, that the
existence of a wnu polymorphism compatible with Γ implies that CSP (Γ) is
in P (this is known under the name Algebraic Dichotomy Conjecture). This
has been checked for some relational structures of a special form, as well as
for all relational structures but given the existence of a wnu polymorphism
of a special form, and in all the cases known so far the results agree with the
conjecture. In many of these works the absorption was the key ingredient in
the proof (see, e.g., the references from the beginning of this section).

In particular, by the result of Jeavons, Cohen and Gyssens [13], we know
that whenever Γ admits a semilattice polymorphism (a semilattice operation
is a binary operation that is idempotent, commutative and associative), then
CSP (Γ) is in P. Theorem 1 from the present paper gives an exact description
of when an algebra is absorbed by its subalgebra in the class of algebras with a
binary associative operation (which is a wider class than the class of algebras
with a semilattice operation). This provides a direct link between Theorem
1 and the current line of attack on the Dichotomy Conjecture. Concerning
our generalization to n-ary semigroups, so far there is no result (at least up
to the author’s knowledge) toward the Dichotomy Conjecture that directly
relates to Conjecture 2 in a similar manner; however, since there are many
results of this kind toward the Dichotomy Conjecture and many researchers
are actively working on it, it is not hard to imagine that such a result exists
and is just waiting to be discovered, and in fact, Conjecture 2 might serve as
a motivation for it.

And of course, speaking about the notion of absorption itself, Theorem
1 and Conjecture 2 may shed some light on the (presently quite unclear)
behavior of absorption, since we now have a natural class of algebras in
which the absorption behaves in a very predictable (but nontrivial) way. It
might be a very useful research direction to discover whether there is a deeper
reason for this nice behavior of absorption in semigroups and (conjecturally)
n-ary semigroups, and whether this reason may help to describe the behavior
of absorption in other classes of algebras.
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2 Absorption in semigroups

The main (in fact, the only) theorem in this section is the following one.

Theorem 1. Let A = (A, ·) be a semigroup, and let B 6 A. Then B E A
if and only if ab ∈ B and ba ∈ B for each a ∈ A, b ∈ B, and there exists a
positive integer k > 1 such that ak ≈ a for each a ∈ A.

Proof. (⇐): Assume that the condition from the statement holds, and let
us prove that B E A. Choose a positive integer k > 1 such that ak ≈ a for
each a ∈ A, and let t(x, y) = xk−1y. For any a ∈ A we have t(a, a) = ak ≈ a,
that is, t is an idempotent term. Further, for any a ∈ A, b ∈ B, we have
t(a, b) = ak−1b = (ak−1)b ∈ B and t(b, a) = bk−1a = b(bk−2a) ∈ B, which
proves that t is an absorbing term.

(⇒): Let B E A, and let t be an absorbing term. Since t is an idempotent
term, we trivially get that there exists a positive integer k > 1 such that
ak ≈ a for each a ∈ A (in particular, k is the length of the term t). Therefore,
we are left to prove that ab ∈ B and ba ∈ B for each a ∈ A, b ∈ B.

Let t be a term in m variables, which are named in such a way that the
leftmost variable in t(x1, x2, . . . , xm) is x1. Let di denote the number of times
the variable xi appears in t(x1, x2, . . . , xm).

Let a ∈ A and b ∈ B be given. We evaluate t(ab, bk−1, bk−1, . . . , bk−1).
Because t(ab, bk−1, bk−1, . . . , bk−1) begins with ab and (ab)bk−1 = abk ≈ ab,
we easily conclude

t(ab, bk−1, bk−1, . . . , bk−1) ≈ (ab)d1 .

Since bk−1 ∈ B and t is an absorbing term, by the previous equality we get

(ab)d1 ∈ B. (2.1)

Let r be any positive integer greater than (m − 1)d1 such that r ≡ 1
(mod k − 1). Note that

rk ≡ 1 · 1 = 1 (mod k − 1). (2.2)

For 2 6 i 6 m, denote

ti = t((ab)d1 , bk−1, . . . , bk−1, (ab)r, bk−1, . . . , bk−1)
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(the expression (ab)r is at the ith coordinate and at all the coordinates de-
noted by “. . . ” we put bk−1). Since (ab)d1 ∈ B (see (2.1)), bk−1 ∈ B and t is
an absorbing term, we get

ti ∈ B. (2.3)

As we have observed earlier, (ab)bk−1 = abk ≈ ab, and we thus conclude that
ti evaluates to a power of ab. In particular, since (ab)d1 appears d1 times and
(ab)r appears di times, we obtain

ti ≈ (ab)d
2
1+rdi . (2.4)

Consider the expression

(ab)(r−(m−1)d1)d1t2t3 · · · tm.

By (2.1) we get

(ab)(r−(m−1)d1)d1 = ((ab)d1)r−(m−1)d1 ∈ B,

which together with (2.3) gives

(ab)(r−(m−1)d1)d1t2t3 · · · tm ∈ B. (2.5)

We further have

(ab)(r−(m−1)d1)d1t2t3 · · · tm
(2.4)
≈ (ab)(r−(m−1)d1)d1+

∑m
i=2(d21+rdi)

= (ab)rd1−(m−1)d21+(m−1)d21+
∑m

i=2 rdi

= (ab)r(d1+d2+···+dm) = (ab)rk.

Since (ab)k ≈ ab, it follows that (ab)l1 ≈ (ab)l2 whenever l1 ≡ l2 (mod k−1).
Therefore,

(ab)(r−(m−1)d1)d1t2t3 · · · tm ≈ (ab)rk
(2.2)
≈ ab.

Together with (2.5), this gives ab ∈ B, which was to be proved. The proof
that ba ∈ B is analogous. This completes the proof of Theorem 1. �
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3 Absorption in n-ary semigroups

We say that an n-ary operation f : An → A is associative iff

f(f(a1, a2, . . . , an), an+1, . . . , a2n−1) = f(a1, f(a2, . . . , an, an+1), . . . , a2n−1)

= · · ·

= f(a1, a2, . . . , f(an, an+1, . . . , a2n−1))

(3.1)
for every a1, a2, . . . , a2n−1 ∈ A. An algebra A = (A, f), where f is an n-ary
associative operation, is called an n-ary semigroup.

Instead of f(a1, a2, . . . , an) we shall often write a1a2 · · · an, instead of the
expressions from (3.1) we shall write a1a2 · · · a2n−1 etc. However, we have
to keep in mind that such an expression, say a1a2 · · · aq, is defined in A if
and only if q ≡ 1 (mod n − 1). On the other hand, any expression of the
form a1a2 · · · aq (no matter whether q ≡ 1 (mod n− 1) or not) will be called
word. Even if the word w is not defined in A, we shall still write wl for
the concatenation ww · · ·w (where w is repeated l times), but we need to be
very careful not to apply any possible identities from A on such a word; for
example, if A is an idempotent ternary semigroup and a, b ∈ A, then (ab)3a
is a valid way to write abababa (which is defined in A), but we cannot deduce
(ab)3a ≈ aba. The notation wl is defined also for l = 0, and in that case it
stands for the “empty word”, that is, uw0v means simply uv.

We believe that Theorem 1 can be generalized for n-ary semigroups in
the following way.

Conjecture 2. Let A = (A, f) be an n-ary semigroup, and let B 6 A. Then
the following conditions are equivalent:

(1) B E A;

(2) abn−1 ∈ B and bn−1a ∈ B for each a ∈ A, b ∈ B, and there exists a
positive integer k > 1 such that ak ≈ a for each a ∈ A;

(3) a1a2 · · · an ∈ B whenever at least one of a1, a2, . . . , an belongs to B, and
there exists a positive integer k > 1 such that ak ≈ a for each a ∈ A.

We say that an n-ary operation f is commutative iff

f(a1, a2, . . . , an) = f(aπ(1), aπ(2), . . . , aπ(n))

6



for any a1, a2, . . . , an and any permutation π of the set {1, 2, . . . , n}. We
now prove Conjecture 2 in the case when f is commutative, and then in two
more cases, namely when |A \B| = 1 and when A is an idempotent ternary
semigroup.

Theorem 3. Conjecture 2 holds when f is commutative.

Proof. The implications (2) ⇒ (3) and (3) ⇒ (1) are easy, and in fact we
shall not use the commutativity of f in their proofs.

(2) ⇒ (3): Let a1, a2, . . . , an ∈ A be given, and let ai ∈ B for some i.
Then

a1a2 · · · ai · · · an ≈ a1a2 · · · a2k−1
i · · · an = (a1a2 · · · an−i+1

i )a2k−n−2
i (aii · · · an),

which implies that it is enough to prove a1a2 · · · an−i+1
i ∈ B and aii · · · an ∈ B.

And indeed:

a1a2 · · · an−i+1
i ≈ a1a2 · · · an−i+ki = (a1a2 · · · ak−i+1

i )an−1
i ∈ B

and
aii · · · an ≈ ai+k−1

i · · · an = an−1
i (ai+k−ni · · · an) ∈ B

by the assumption.
(3) ⇒ (1): Let t(x, y) be any term of length k containing at least one

occurrence of each variable x and y. Then t is an absorbing term.
That leaves only the implication (1) ⇒ (2). We also note that, since we

have just shown that the previous two implications always hold, in the later
theorems we prove only the implication (1)⇒ (2).

(1) ⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term.
Let k be the length of t. Then ak ≈ a for each a ∈ A, and furthermore,
al1 ≈ al2 whenever l1 ≡ l2 (mod k − 1).

By the commutativity of f , we may write t(x1, x2, . . . , xm) in the form
xk11 x

k2
2 · · ·xkm

m , where k1 + k2 + · · ·+ km = k. Let us show that bn−1a ∈ B for
each a ∈ A, b ∈ B.

Let a ∈ A, b ∈ B. Let

t1(a, b) = t(a, b, b, . . . , b)t(b, a, b, . . . , b)t(b, b, a, . . . , b) · · · t(b, b, b, . . . , a)bl,

where l is chosen so that

m+ l ≡ n (mod k − 1). (3.2)
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The length of t1 equals mk + l. Since mk + l ≡ m + l ≡ n (mod k − 1)
and n − 1 | k − 1, we get mk + l ≡ n ≡ 1 (mod n − 1), that is, t1 is
well-defined. Further, since t is an absorbing term, we have t(a, b, b, . . . , b) ∈
B, t(b, a, b, . . . , b) ∈ B, . . . , t(b, b, b, . . . , a) ∈ B, which gives t1(a, b) ∈ B.
Finally, note that

t1(a, b) ≈ ak1bk−k1ak2bk−k2 · · · akmbk−kmbl ≈ bmk−(k1+k2+···+km)+lak1+k2+···+km

≈ b(m−1)k+lak ≈ bm−1+la
(3.2)
≈ bn−1a,

(3.3)
which proves that bn−1a ∈ B. The proof of abn−1 ∈ B is analogous. �

Theorem 4. Conjecture 2 holds when |A \B| = 1.

Proof. (1)⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term.
Let k be the length of t. By the idempotence of t it follows that ak ≈ a and
in fact that al1 ≈ al2 whenever a ∈ A and l1 and l2 are positive integers such
that l1 ≡ l2 (mod k − 1).

Let A\B = {c}. All we have to prove is that bn−1c 6≈ c and cbn−1 6≈ c for
each b ∈ B. In the first place, we shall prove that ck−1b ∈ B and bck−1 ∈ B
for each b ∈ B, which shall be needed later.

Aiming for a contradiction, suppose first that ck−1b ≈ c for some b ∈ B.
Let xi be the leftmost variable in t(x1, x2, . . . , xm). Putting c at the ith

coordinate and b at all the other ones gives

t(b, . . . , b, c, b, . . . , b) = cc · · · ccbb · · · bbcc · · · ccbb · · · bb · · · .

Let us show that each occurrence of cb in the above expression can be replaced
by cc without affecting the value of t(b, . . . , b, c, b, . . . , b). And indeed, we have

· · · cb · · · ≈ · · · ckb · · · = · · · cck−1b · · · ≈ · · · cc · · · ,

which proves the claim. By iterating this process we ultimately get

t(b, . . . , b, c, b, . . . , b) ≈ ck ≈ c;

however, since t is an absorbing term, t(b, . . . , b, c, b, . . . , b) ∈ B should hold,
a contradiction. This proves that ck−1b 6≈ c. In an analogous way we obtain
that bck−1 6≈ c.
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Again aiming for a contradiciton, suppose now that

bn−1c ≈ c (3.4)

for some b ∈ B. It now follows that

c ≈ ck = ccck−2
(3.4)
≈ (bn−1c)(bn−1c)ck−2 = b(bn−2cb)bn−3(bck−1).

Since b ∈ B and bck−1 ∈ B, it is impossible that bn−2cb ∈ B, since then
the value at the right-hand side would belong to B, while the value at the
left-hand side is c. In other words,

bn−2cb ≈ c. (3.5)

Now, let

t1(c, b) = t(c, b, b, . . . , b)t(b, c, b, . . . , b)t(b, b, c, . . . , b) · · · t(b, b, b, . . . , c)bl,

where l is chosen so that m+ l ≡ n (mod k− 1). In exactly the same way as
in the proof of Theorem 3, we see that t1 is well-defined and that t1(c, b) ∈ B.
Furthermore, we note that each occurrence of cb in t1(c, b) can be replaced
by bc without affecting the value of t1(c, b); indeed:

· · · cb · · ·
(3.4)
≈ · · · (bn−1c)b · · · = · · · b(bn−2cb) · · ·

(3.5)
≈ · · · bc · · · .

This enables us to further mimic the proof of Theorem 3 (in particular, the
lines (3.3)), thus obtaining t1(c, b) ≈ bn−1c and hence bn−1c ∈ B. However,
this is exactly the opposite of the supposition (3.4). This condradiction
proves bn−1c ∈ B. The proof of cbn−1 ∈ B is analogous. �

Theorem 5. Conjecture 2 holds when A is an idempotent ternary semigroup.

Proof. (1)⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term,
where the variables are named in such a way that the leftmost variable is x1.
Let k be the length of t.

We need to prove that ab2 ∈ B and b2a ∈ B for any a ∈ A, b ∈ B. The
proof proceeds in nine steps:

1. We show that whenever u2vu ∈ B, where u is any word of an odd
length and v of an even length, then vu ∈ B. Analogously, we also
obtain that, whenever uvu2 ∈ B, then uv ∈ B.
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2. We show that whenever ub ∈ B, where u is any word of an even length
and b ∈ B, then bu ∈ B, and vice versa.

3. We show that abbab ∈ B and babba ∈ B for any a ∈ A, b ∈ B.

4. We show that aab ∈ B, baa ∈ B and aabaa ∈ B for any a ∈ A, b ∈ B.

5. We show that, whenever t′(x, y) is a term such that t′(a, b) ∈ B for
all a ∈ A, b ∈ B, then b(ab)l ∈ B, where l is the absolute value of
the difference of the number of occurrences of the letter a at the odd,
respectively even positions in the word t′(a, b).

6. We show that, whenever b(ab)l ∈ B for an integer l > 1 and some
a ∈ A, b ∈ B, then (ab)l−1a ∈ B.

7. We show that there exists a positive integer l such that b(ab)l ∈ B and
b(ab)l+1 ∈ B for any a ∈ A, b ∈ B.

8. We show that bab ∈ B for any a ∈ A, b ∈ B.

9. We show that ab2 ∈ B and b2a ∈ B for any a ∈ A, b ∈ B.

We now prove these steps.

1. Since u2vu ∈ B, we obtain t(vu, u2vu, u2vu, . . . , u2vu) ∈ B. Note that

(vu)(u2vu) · · · = vu3vu · · · ≈ vuvu · · · = (vu)(vu) · · · .

Therefore,

t(vu, u2vu, u2vu, . . . , u2vu) ≈ (vu)k ≈ vu,

which gives vu ∈ B. The proof that uvu2 ∈ B implies uv ∈ B is
analogous.

2. If ub ∈ B, then bub2 = b(ub)b ∈ B, and now bu ∈ B by the previous
step. The other direction is analogous.

3. Let a ∈ A, b ∈ B be given. Denote

a′ = abbab.

10



We have t(a′bb, b, b, . . . , b) ∈ B. Note that t(a′bb, b, b, . . . , b) is a word
that starts with a′, ends with b and has no occurrences of two letters
a′ next to each other; furthermore, since b3 ≈ b, this word reduces to
a word that has either b or bb between each two successive occurrences
of a′. We note

a′ba′ = (abbab)b(abbab) = (abb)3ab ≈ abbab = a′,

that is, each occurrence of a′ba′ in the considered word reduces to a′.
It follows that t(a′bb, b, b, . . . , b) reduces to a word a′bba′bba′bba′ · · · b,
that is, either to (a′bb)l or to (a′bb)la′b for some odd positive integer l
(l has to be odd for these products to be defined). These words further
reduce to a′bb and a′bba′b, respectively. Since

a′bb = (abbab)bb = abbab3 ≈ abbab

and

a′bba′b = (abbab)bb(abbab)b = abbab3abbabb ≈ abbababbabb,

we obtain abbab ∈ B or abbababbabb ∈ B. In the first case, this is
what was to be proved. In the second case, since (abb)ab(abb)2 =
abbababbabb ∈ B, by step 1 we again obtain abbab ∈ B. The proof that
babba ∈ B is analogous (or, alternatively, follows from abbab ∈ B and
step 2).

4. Let a ∈ A, b ∈ B be given. By the previous step, we have

aabaabb ≈ aab3aabb = (aab)bb(aab)b ∈ B.

In an analogous way, we obtain

bbaabaa ∈ B.

From these two conclusion we get

bbaab ≈ bb(aab)3 = bbaabaabaab ≈ bbaaba4baab3

= (bbaabaa)(aabaabb)b ∈ B.

Now, since bbaab ∈ B, step 1 gives aab ∈ B. The proof that baa ∈ B is
analogous (or, alternatively, follows from aab ∈ B and step 2). Finally,
aabaa ≈ aab3aa = (aab)b(baa) ∈ B.
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5. Let a ∈ A, b ∈ B be given. We may assume that the leftmost variable
in t′(x, y) is x: indeed, if t′(x, y) begins with y and t′(a, b) ∈ B for
all a ∈ A, b ∈ B, then because of step 2 the same holds for the term
obtained from the term t′ by moving the leftmost y to the end, and this
can be repeated until we reach a term that begins with x. We have
t′(abb, b) ∈ B. The word t′(abb, b) is a word that starts with a, ends
with b, and has no occurrences of two letters a next to each other. Since
b3 ≈ b, this word reduces to a word that has either b or bb between each
two successive occurrences of a. We can write the obtained word in the
form

(ab)l1b(ab)l2b(ab)l3b · · · (3.6)

with either · · · (ab)lq or · · · (ab)lqb at the end, for some positive integers
l1, l2, . . . , lq.

Given a word consisting only of the letters a and b, by its difference
we shall mean the absolute value of the difference of the number of
occurrences of the letter a at the odd, respectively even positions in
the considered word. We can assume that the difference of the word
t′(a, b) is nonzero, since otherwise the conclusion we have to reach is
b ∈ B, which holds trivially.

Notice that the difference of the word t′(a, b) equals the difference of
the word t′(abb, b) (the latter word is obtained by inserting bb after
each occurrence of a in the former word, which keeps the parities of
the positions at which a appears in the former word), which in turn
equals the difference of the word (3.6) (replacing b3 by b also keeps the
considered parities), which is evaluated to

|l1 − l2 + l3 − · · ·+ (−1)q+1lq|. (3.7)

If q = 1, then the word (3.6) is (ab)l1b (it cannot be (ab)l1 because this
word has an even length) and its difference is l1. Now from (ab)l1b ∈ B
and step 2 we obtain b(ab)l1 ∈ B, which was to be proved.

Let q = 2. Then the word (3.6) is (ab)l1b(ab)l2 (there cannot be
· · · (ab)l2b at the end, because then the length would be even). The
difference of this word, which is assumed to be nonzero, equals |l1 −
l2|; therefore, l1 6= l2, and in particular, l1 + l2 > 3. Now, since
(ab)l1b(ab)l2 ∈ B and (ab)l1−1b(ab)l2−1 ∈ A, step 4 gives

((ab)l1−1b(ab)l2−1)2((ab)l1b(ab)l2)((ab)l1−1b(ab)l2−1)2 ∈ B.
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Further, we have

((ab)l1−1b(ab)l2−1)2((ab)l1b(ab)l2)((ab)l1−1b(ab)l2−1)2

= (ab)l1−1b(ab)l1+l2−2b(ab)l1+l2−1b(ab)l1+l2−1b(ab)l1+l2−2b(ab)l2−1

= (ab)l1−1b((ab)l1+l2−2bab)3(ab)l1+l2−3b(ab)l2−1

≈ (ab)l1−1b(ab)l1+l2−2bab(ab)l1+l2−3b(ab)l2−1

= (ab)l1−1b(ab)l1+l2−2b(ab)l1+l2−2b(ab)l2−1

= ((ab)l1−1b(ab)l2−1)3 ≈ (ab)l1−1b(ab)l2−1.

Therefore, if (ab)l1b(ab)l2 ∈ B, then (ab)l1−1b(ab)l2−1 ∈ B. Further,
note that the difference of the latter word equals |(l1 − 1)− (l2 − 1)| =
|l1 − l2|, that is, this transformation preserves the difference. Repeat-
edly applying this procedure ultimately leads to b(ab)l2−l1 ∈ B or
(ab)l1−l2b ∈ B (depending on whether l2 > l1 or l1 > l2). In the former
case, the claim is proved. In the latter case, step 2 gives b(ab)l1−l2 ∈ B,
which again proves the claim.

Finally, let q > 3. We assume l1 6 lq. Let us explain why we
are allowed to make this assumption. If it were lq < l1, then from
(ab)l1b(ab)l2b · · · (ab)lq ∈ B (the case with · · · (ab)lqb at the end is simi-
lar) we get, by step 2, (ba)l1b(ba)l2 · · · b(ba)lq ∈ B, and now since lq < l1,
everything that follows could be applied as if, informally speaking, it
were read from right to left.

We claim that there exists a word that belongs to B, starts with a,
ends with b, has no occurrences of two letters a next to each other, has
the same difference as the word (3.6) and is shorter than (3.6).

We first consider the case when l1 > l2 or l1 > l3. Since l1 6 lq, it
follows that l2 6 lq or l3 < lq, respectively. We conclude that the
minimal possible value of li, 1 6 i 6 q, is achieved for at least one i
such that 2 6 i 6 q − 1. For such i we have

(ab)l1b(ab)l2b · · · b(ab)li−1b(ab)lib(ab)li+1b · · ·

= (ab)l1b(ab)l2b · · · (ba)li−1−li(b(ab)li)3(ab)li+1−lib · · ·

≈ (ab)l1b(ab)l2b · · · (ba)li−1−lib(ab)li(ab)li+1−lib · · ·

≈ (ab)l1b(ab)l2b · · · b(ab)li−1+li+1−lib · · ·
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This gives the shorter word we were looking for. Indeed, it is enough
to check that the obtained word has the same difference as the word
(3.6) (all the other requirements are immediately clear). And indeed,
the difference of the obtained word equals∣∣∣∣∣

i−2∑
j=1

(−1)j+1lj + (−1)i(li−1 + li+1 − li) +

q∑
j=i+2

(−1)j+1lj

∣∣∣∣∣ ,
which is easily seen to be equal to (3.7).

Let now l1 < l2 and l1 6 l3. Since the word (3.6) is in B and b(ab)l2−l1 ∈
A, step 4 gives

(b(ab)l2−l1)(b(ab)l2−l1)((ab)l1b(ab)l2b(ab)l3b · · · ) ∈ B.

Further, we have

(b(ab)l2−l1)(b(ab)l2−l1)((ab)l1b(ab)l2b(ab)l3b · · · )

= b(ab)l2−l1b(ab)l2b(ab)l2b(ab)l3b · · ·

= b((ab)l2−l1b(ab)l1)3(ab)l3−l1b · · ·

≈ b(ab)l2−l1b(ab)l1(ab)l3−l1b · · · = b(ab)l2−l1b(ab)l3b · · ·

Now, since b(ab)l2−l1b(ab)l3b · · · ∈ B, by step 2 it follows that the word
obtained from this word by moving the letter b from the beginning
to the end (and possibly applying b3 ≈ b at the end, in case that b3

appears there) also belongs to B. This gives the shorter word we were
looking for. Indeed, it is again enough to check only that the obtained
word has the same difference as the word (3.6), which follows by noting
that the difference of the obtained word equals∣∣∣∣∣(l2 − l1) +

q∑
j=3

(−1)jlj

∣∣∣∣∣ =

∣∣∣∣∣
q∑
j=1

(−1)jlj

∣∣∣∣∣ =

∣∣∣∣∣
q∑
j=1

(−1)j+1lj

∣∣∣∣∣ .
To conclude the proof, we note that repeatedly applying this procedure
of “shortening the word” ultimately leads to a word of the form treated
in one of the cases q = 1 or q = 2, from where we reach the desired
conclusion in the already demonstrated way.
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6. Let b(ab)l ∈ B. By step 2, (ab)lb ∈ B. Since aab ∈ B (because of step
4), it follows that

(ab)laab = (ab)l−1abaab ≈ (ab)l−1ab3aab = ((ab)lb)b(aab) ∈ B.

Denote a′ = (ab)l−1a and b′ = (ab)laab. Since b′ ∈ B, by step 4 we get
a′a′b′a′a′ ∈ B. Note that

a′a′b′a′a′ = ((ab)l−1a)((ab)l−1a)((ab)laab)((ab)l−1a)((ab)l−1a)

= (ab)l−1a(ab)l−1a(ab)la(ab)la(ab)l−1a

= (ab)l−1a(ab)l−2(aba(ab)l−1)3a

≈ (ab)l−1a(ab)l−2(aba(ab)l−1)a = ((ab)l−1a)3 ≈ (ab)l−1a.

This completes the proof.

7. Let oi, respectively ei, denote the number of occurrences of the letter
xi at the odd, respectively even, positions in the word t(x1, x2, . . . , xm)
(we recall that t is an absorbing term). Then the difference of the word
t(b, . . . , b, a, b, . . . , b) (a is at the ith coordinate) equals |oi − ei|. We
claim that these differences, for 1 6 i 6 m, are coprime (not necessarily
pairwise coprime). Suppose the opposite: there exists a prime number
p such that p | |oi − ei| for each i, 1 6 i 6 m. Then

p |
m∑
i=1

(oi − ei) =
m∑
i=1

oi −
m∑
i=1

ei =

⌈
k

2

⌉
−
⌊
k

2

⌋
= 1

(we recall that k is the length of t), which is a contradiction. Therefore,
the considered differences are coprime.

By step 5, if li is any of these differences, then b(ab)li ∈ B for all
a ∈ A, b ∈ B. If li and lj are any two of these differences, then

b(ab)li+lj = b(ab)li(ab)lj ≈ (b(ab)li)b(b(ab)lj ) ∈ B.

Therefore, b(ab)l ∈ B whenever l is any linear combination with non-
negative integer coefficients of the considered differences. Since these
differences are coprime, any large enough positive integer can be rep-
resented as a linear combination of them. In particular, there indeed
exists a positive integer l such that b(ab)l ∈ B and b(ab)l+1 ∈ B.
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8. Let l0 be the least positive integer such that b(ab)l0 ∈ B and b(ab)l0+1 ∈
B for any a ∈ A, b ∈ B (such a number exists by the previous step).
We need to prove that l0 = 1. Aiming for a contradiction, suppose that
l0 > 2. We shall prove that b(ab)l0−1 ∈ B for any a ∈ A, b ∈ B, which,
together with the assumed b(ab)l0 ∈ B, contradicts the minimality of
l0.

We first treat the case l0 = 2. Let a ∈ A, b ∈ B be given, and let us
prove that bab ∈ B. We have b(ab)2 ∈ B and b(ab)3 ∈ B. By step 6, we
have aba ∈ B and ababa ∈ B. Since, by step 4, aab ∈ B and baa ∈ B,
we conclude

(baa)(aba)(ababa)(aba)(baa)b(aab) ∈ B.

Further, we have

(baa)(aba)(ababa)(aba)(baa)b(aab) = baa(abaab)3aab ≈ baaabaabaab

= ba(aab)3 ≈ baaab ≈ bab.

This proves the case l0 = 2.

Let now l0 > 3. Let a ∈ A, b ∈ B be given, and let us prove that
b(ab)l0−1 ∈ B. Denote a′ = bab and b′ = abbab. By step 3, we have
b′ ∈ B. Therefore, b′(a′b′)l0 ∈ B and b′(a′b′)l0+1 ∈ B. By step 6, we
have (a′b′)l0−1a′ ∈ B and (a′b′)l0a′ ∈ B. By step 4, we have a′a′b′ ∈ B.
Therefore,

((a′b′)l0−1a′)((a′b′)l0a′)((a′b′)l0−1a′)b′(a′a′b′) ∈ B.

Further, we have

((a′b′)l0−1a′)((a′b′)l0a′)((a′b′)l0−1a′)b′(a′a′b′)

= (a′b′)l0−1a′(a′b′)l0a′(a′b′)l0a′a′b′ = ((a′b′)l0−1a′a′b′)3

≈ (a′b′)l0−1a′a′b′ = ((bab)(abbab))l0−1(bab)(bab)(abbab)

= (bababbab)l0−2babab(bab)3abbab

≈ (bababbab)l0−2bababbababbab = (bababbab)l0−3bababb(abbab)3

≈ (bababbab)l0−3bababbabbab = ba((bab)2ba)l0−2b

≈ ba(ba)l0−2b = b(ab)l0−1.
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(Between the last and the next to last row we used the fact that after
each (bab)2 there is another bab following, and thus, because of (bab)3 ≈
bab, we may simply erase each such (bab)2.) This completes the proof.

9. Let a ∈ A, b ∈ B be given. By the previous step, we have bab ∈ B.
By the step 2, we now obtain ab2 ∈ B and b2a ∈ B, which was to be
proved.

The proof of Theorem 5 is thus finished. �

For the end, we prove a proposition that shows that the requirement that
A is idempotent from the previous theorem is, in a way, not so restrictive as
it might seem to be.

Proposition 6. Assume that Conjecture 2 holds for all idempotent n-ary
semigroups. Then Conjecture 2 holds in general.

Proof. As before, it is enough to prove only the direction (1) ⇒ (2). Let
B E A, and let t(x1, x2, . . . , xm) be an absorbing term. Let k be the length
of t. Then the algebra A′ = (A, f ′), where f ′(x1, x2, . . . , xk) = x1x2 · · ·xk, is
a k-ary idempotent semigroup. The term t is also an absorbing term for B
in A′, that is, B E A′. Therefore, by the assumed special case of Conjecture
2, bk−1a ∈ B and abk−1 ∈ B for each a ∈ A, b ∈ B. Of course, the same also
holds in A. From here it is easy to prove that bn−1a ∈ B and abn−1 ∈ B for
each a ∈ A, b ∈ B; indeed:

bn−1a ≈ bn+k−2a = bn−1(bk−1a) ∈ B

and an analogous reasoning shows abn−1 ∈ B. �
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